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ABSTRACT 

Solvability and boundedness criteria for dual linear programming problems 
are given in terms of the problem data and the intersections of the nonnegative 
orthant with certain complementary orthogonal subspaces. 

Introduction. The duality theorem of  linear programming(1) relates two 
linear extremum problems in terms of solvability, boundedness and equality 
of functional values. The classical theory of Lagrange multipliers admits ex- 
tensions to some special nonlinear cases(2) as well as interpretations of  duality 
in the context of  applications(a). 

Tucker, in [16], showed duali ty--in the linear case-- to follow from elementary 
geometric considerations of complementary orthogonality of manifolds corres- 
ponding to the dual problems(4). 

In this paper we follow Tucker 's  approach and supplement his results [16] 
by an alternative theorem for dual programs (Theorem 4 below), and by a charac- 
terization of  all duality situations in terms of  the geometrical configurations of  
certain manifolds associated with the data and the data itself (Theorem 6 
below). 

None of our results seem to be essentially new; yet our efforts may be justified 
for pedagogical reasons. 

NOTATIONS. In this note we use the same notations as in [1]. In particular: 
is an arbitrary ordered field; 

E" is the n-dimensional vector space over ~ ' ;  
C{fl,...,fg} is the cone spanned by the vectors f l , ' " , f k  in E"; 
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*This research was partly supported by the Office of Naval Research, contract Nonr-1228(10), 
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(1) Conjectured by Von Neumann (e.g. [7], p. 23) and proved byGale, Kuhn and Tucker 

[8]. For the extended form discussed here, see Charnes and Cooper [3]. 
(2) Notably Kuhn and Tucker [11 ]. 
(3) E.g. [7], pp. 19-22. 
(4) A similar approach was used in [1] to develop, in a unified manner, the main theorems 

of linear inequalities. 
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A is an m x n matrix over ~ ;  
N(A) is the null space of A in E"; 
R(A r) is the range space of A r in E". 
In addition, let A + denote the generalized inverse of A (see, e.g., [14] and [2]). 
The following two theorems, which are Corollaries 3' and 5 respectively of [1], 

are used in the sequel and quoted here for ease of reference: 

0.1 Tt-mOREM. Let L, L ± be complementary orthogonal subspaces in E ~. 
Then the following are equivalent: 

(i) L n E ~ .  = {0};  
(ii) L ± n in tE~  # ¢. 

0.2 THEOREM. Let Lbe a subspace of E ~ of dimension k, k = 1,2, . . . ,n.  Then 
the following are equivalent: 

(i) LC~bdE~+=C{el,...,ep}, l <=p<=k; 
(ii) L ± has a basis in in tC{ep+l , . . . ,e ,} .  

1. LEPTA. Let L be an arbitrary subspace of E ~. Then the following are 
equivalent: 

(i) {x +L}~E~+ v~p for all x~E~; 
(ii) L n int E~. # ~b; 
(iii) {x + L} nintE~.  # q~ for all x E E  ~. 

Proof.  
(i) => (ii) 
Suppose (ii) is false. This is possibly only in two cases: 

Case A: L N b d E ~  = C{el,... ,%}, 1< p <  n-dimL. 
Case B: LOE~_ = {0}. 

We will now show (i) to be false by producing, in each case, a vector Xo such that 

{Xo + L} = ¢. 
Case A: Let Xo be any vector in L ± n i n t C { - % + l ,  . . . , -e~}, a set which 

is nonempty by Theorem 0.2. 
n o Case B: Let Xo be any vector in L Z n i n t { - E + } ,  the latter set is non- 

empty by Theorem 0.1. 
(ii) ~ (iii) 

Let y E L ~ intEr_. Then for all x e E ~ and scalars 2 satisfying 

> max I x'----L-I 
xt<o yt 

we have x + 2y EintE~.. 
(iii) ~ (i) Obvious. 

2. COROLLARY. Let A be an arbitrary m x n matrix over ,~. Then the 
following are equivalent: 
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(i) Ax  = b, x > 0 is solvable for  all b ~ R ( A ) ;  
(ii) Ax = O, x > 0 is solvable; 
(iii) Ax  = b, x > 0 is solvable for  all b ~ R ( A ) .  

Proof. 
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The solutions of Ax = b, when solvable, form the manifold A+b + N(A), 
where A + denotes the generalized inverse of A, [14]. Now (i), (ii) and (iii) are 
the corresponding parts in Lemma 1 with x = A+b and L =  N(A).  

3. COROLLARY. Let A be an arbitrary m x n matrix  over ~ .  Then the 

fol lowing are equivalent: 
(i) A r w > c  is solvable for  all c~E";  
(ii) Arw > 0 is solvable; 

(iii) Arw > c is solvable for  all c~E" .  

Proof. In Lemma 1 let L =  R(AT), x = - c .  

4. THEOREM. Let A be an arbitrary m x n matrix  over ~ .  Consider the 

system of equations and inequalities: 
I) A x = b ,  x>=O I ') A x = O ,  x>=O 
II) Ar  w > c II ') Arw > 0 

Then: 
a) I is solvable for  all b ~ R(A) i f  and only i f  II '  does not have solutions 

with nonnegative nonzero vectors Arw. 

b) II is solvable for  all c ~ E" i f  and only if  I' does not have nonnegative 
nonzero solutions. 

c) I f  II '  has solutions w with Arw > 0 then I is solvable i f  and only i f  
Arw>_O ~ (b,w)>=O. 

d) I f  I' has solutions x with x >_ 0 then II is solvable if  and only if  
A x = O ,  x > O  ~ ( c , x )<O.  

Proof. 
a) By Corollary 2 it follows that I is solvable for all b ~ R(A) if and only if 

N(A)n in tE"+ ~ ~p. By Theorem 0.1, the latter condition is equivalent to 
R(A n = { 0 } .  

b) By Corollary 3, II is solvable for all c ~ E" if and only if R (A r) ~ inter+ ~ q~. 
This is equivalent, by Theorem 0.1 to: N(A)nE"+ = {0}. 

c) This is the well-known Farkas'  lemma (see, e.g. [15]). 
d) This is Theorem 1 in Ky Fan [6]. 

REMARKS. 
a) Theorem 4 is a collection of classical results in a setup which is completely 

analogous to "Fredholm's  Alternative" theorem for linear equations [5]. Sol- 
vability relations between linear inequalities and equations were studied by 
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Motzkin [13], Kuhn [10] and generalized by Ky Fan to the case of complex 
normed linear spaces [6]. For a use of Fredholm's theorem to prove the main 
theorems of linear inequalities see [1]. 

b) For b E R(A), part c can be rewritten as: 
c') If b ~ R(A) and II '  has solutions w with Arw > 0 then I is solvable if 

and only if 

Arw > 0 =~ (Arw,A +b) > O. 

This follows from the fact that AA ÷ is the perpendicular projection on R(A), 
e.g. [2]. 

5. Let A be an arbitrary m x n matrix over ~-, b e E " and c e E". Let 

S = {xeE":  A x = b ,  x>O}  

T =  { w e e  m: A r w > c }  

11 = sup(c,x) 
x~,.~ 

12 = inf (b,w) 
K E T  

The duality theorem of linear programming relates the problem of solving for 11 
the primal problem, to that of solving for 12, the dual problem. 

The duality theorem states indeed that there are four mutually exclusive cases: 
Case A: S ~ ,  T ~ b ,  I x = l  2 
Case B: S = ¢ ,  T¢~b, I 2 = - ~  
Case C: S ~ ¢ ,  T = q ~ , I 1 =  
Case D: S = ¢ ,  T=~b 

Conjectured by von Neumann (see [7], p. 23) and proved by Gale, Kuhn and 
Tucker [8], this theorem was extended to some nonlinear situations, the most 
general being that of Charnes, Cooper and Kortanek [4]. 

We will now elaborate on the four cases given above. In terms of the data 
{A, b, c}, and more specifically of the configurations of N(A) and R(A r) with 
respect to E~, we give below conditions for the attainment of each of the 
above cases. 

6. THEOREM. Let A be an arbitrary m n matrix over ,~, b eR(A) in E m, 
c ~ E" and let S, T, I1 and 12 be as above. Then there are eight mutually exclusive 
cases, tabulated below. 

Proof. The cases 1, ..., 8 are clearly mutually exclusive. In each case Theorem 
4 is used to draw the conclusions regarding the sets S and T. Then the duality 
theorem of linear programming is used to obtain 11 and I2. 

RE~a~Ks. 
a) The above 8 cases can be visualized geometrically in a manner which 

helps to clarify the concept of duality. Thus in the 2-dimensional case where A 
is a 1 x 2 matrixj dimR(A r) = dimN(A) = 1, the first case appears as follows: 
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The other cases are drawn in a similar manner. Furthermore, by the "comple- 
mentary slackness" property, it is now easy to identify optimal points. Thus Xo 
is the optimal solution of the primal problem and a = Arwo- c, where Wo is 
the optimal solution of the dual problem ([,16], p. 15). 

b) Theorem 6 combines well-known solvability theorems (Tucker [16], 
Charnes-Cooper [.3], p. 214), and the duality theorem of linear programming 
to characterize the duality situations in terms of the data {A,b,c). 
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